56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f47f1000cf542c50ff91
 | ||
| challengeType: 5
 | ||
| title: 'Problem 274: Divisibility Multipliers'
 | ||
| videoUrl: ''
 | ||
| localeTitle: 问题274:可分性乘数
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id="description">对于每个整数p> 1互质到10,有一个正的可分性乘数m <p,它对任何正整数n的后续函数保持p的可除性。 <p> f(n)=(除了n的最后一位以外的所有数字)+(n的最后一位)* m </p><p>也就是说,如果m是p的可分数乘数,则当且仅当n可被p整除时,f(n)可被p整除。 </p><p> (当n远大于p时,f(n)将小于n,并且f的重复应用为p提供乘法可除性测试。) </p><p>例如,113的可分性乘数是34。 </p><p> f(76275)= 7627 + 5 <em>34 = 7797:76275和7797都可以被113f(12345)= 1234 + 5</em> 34 = 1404:12345和1404整除都不能被113整除</p><p>对于10和小于1000互质的素数的可除性乘数的总和是39517.对于10和小于107互质的素数的可除数乘数的总和是多少? </p></section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id="instructions">
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>euler274()</code>应该返回1601912348822。
 | ||
|     testString: 'assert.strictEqual(euler274(), 1601912348822, "<code>euler274()</code> should return 1601912348822.");'
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler274() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler274();
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| </section>
 |