2.9 KiB
id, challengeType, title, forumTopicId
id | challengeType | title | forumTopicId |
---|---|---|---|
5900f3ac1000cf542c50febf | 5 | Problem 64: Odd period square roots | 302176 |
Description
All square roots are periodic when written as continued fractions and can be written in the form:
\displaystyle \quad \quad \sqrt{N}=a_0+\frac 1 {a_1+\frac 1 {a_2+ \frac 1 {a3+ \dots}}}
For example, let us consider \sqrt{23}:
:
\quad \quad \sqrt{23}=4+\sqrt{23}-4=4+\frac 1 {\frac 1 {\sqrt{23}-4}}=4+\frac 1 {1+\frac{\sqrt{23}-3}7}
If we continue we would get the following expansion:
\displaystyle \quad \quad \sqrt{23}=4+\frac 1 {1+\frac 1 {3+ \frac 1 {1+\frac 1 {8+ \dots}}}}
The process can be summarized as follows:
\quad \quad a_0=4, \frac 1 {\sqrt{23}-4}=\frac {\sqrt{23}+4} 7=1+\frac {\sqrt{23}-3} 7
\quad \quad a_1=1, \frac 7 {\sqrt{23}-3}=\frac {7(\sqrt{23}+3)} {14}=3+\frac {\sqrt{23}-3} 2
\quad \quad a_2=3, \frac 2 {\sqrt{23}-3}=\frac {2(\sqrt{23}+3)} {14}=1+\frac {\sqrt{23}-4} 7
\quad \quad a_3=1, \frac 7 {\sqrt{23}-4}=\frac {7(\sqrt{23}+4)} 7=8+\sqrt{23}-4
\quad \quad a_4=8, \frac 1 {\sqrt{23}-4}=\frac {\sqrt{23}+4} 7=1+\frac {\sqrt{23}-3} 7
\quad \quad a_5=1, \frac 7 {\sqrt{23}-3}=\frac {7 (\sqrt{23}+3)} {14}=3+\frac {\sqrt{23}-3} 2
\quad \quad a_6=3, \frac 2 {\sqrt{23}-3}=\frac {2(\sqrt{23}+3)} {14}=1+\frac {\sqrt{23}-4} 7
\quad \quad a_7=1, \frac 7 {\sqrt{23}-4}=\frac {7(\sqrt{23}+4)} {7}=8+\sqrt{23}-4
It can be seen that the sequence is repeating. For conciseness, we use the notation \sqrt{23}=[4;(1,3,1,8)]
, to indicate that the block (1,3,1,8) repeats indefinitely.
The first ten continued fraction representations of (irrational) square roots are:
\quad \quad \sqrt{2}=[1;(2)]
, period = 1
\quad \quad \sqrt{3}=[1;(1,2)]
, period = 2
\quad \quad \sqrt{5}=[2;(4)]
, period = 1
\quad \quad \sqrt{6}=[2;(2,4)]
, period = 2
\quad \quad \sqrt{7}=[2;(1,1,1,4)]
, period = 4
\quad \quad \sqrt{8}=[2;(1,4)]
, period = 2
\quad \quad \sqrt{10}=[3;(6)]
, period = 1
\quad \quad \sqrt{11}=[3;(3,6)]
, period = 2
\quad \quad \sqrt{12}=[3;(2,6)]
, period = 2
\quad \quad \sqrt{13}=[3;(1,1,1,1,6)]
, period = 5
Exactly four continued fractions, for N \le 13
, have an odd period.
How many continued fractions for N \le 10\,000
have an odd period?
Instructions
Tests
tests:
- text: <code>oddPeriodSqrts()</code> should return a number.
testString: assert(typeof oddPeriodSqrts() === 'number');
- text: <code>oddPeriodSqrts()</code> should return 1322.
testString: assert.strictEqual(oddPeriodSqrts(), 1322);
Challenge Seed
function oddPeriodSqrts() {
return true;
}
oddPeriodSqrts();
Solution
// solution required