* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f40c1000cf542c50ff1e | 问题159:因子的数字根和 | 5 | problem-159-digital-root-sums-of-factorisations |
--description--
复合数可以通过许多不同的方式考虑。例如,不包括乘以一,24可以用7种不同的方式考虑:
24 = 2x2x2x3 24 = 2x3x4 24 = 2x2x6 24 = 4x6 24 = 3x8 24 = 2x12 24 = 24
回想一下,基数为10的数字的数字根是通过将该数字的数字加在一起而得到的,并重复该过程,直到到达的数字小于10.因此,467的数字根是8。应将数字根和(DRS)称为我们数字的各个因子的数字根的总和。下图显示了所有DRS值24.因子分解数字根Sum2x2x2x3 92x3x4 92x2x6 104x6 103x8 112x12 524 6 24的最大数字根和为11.函数mdrs(n)给出n的最大数字根和。所以mdrs(24)= 11。找到Σmdrs(n)为1 <n <1,000,000。
--hints--
euler159()
应返回14489159。
assert.strictEqual(euler159(), 14489159);
--seed--
--seed-contents--
function euler159() {
return true;
}
euler159();
--solutions--
// solution required