Files
freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-312-cyclic-paths-on-sierpiski-graphs.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

946 B
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4a51000cf542c50ffb7 问题312Sierpiński图上的循环路径 5 problem-312-cyclic-paths-on-sierpiski-graphs

--description--

-1阶S1的Sierpiński图是等边三角形。

-通过将Sn的三个副本放置在Sn上从而使每对副本都有一个公共角从而从Sn中获得Sn +1。

令Cn为恰好一次通过Sn的所有顶点的循环数。 例如C3= 8因为可以在S3上绘制八个这样的循环如下所示

也可以验证: C1= C2= 1 C5= 71328803586048 C10,000mod 108 = 37652224 C10,000模138 = 617720485

求CCC10,000mod 138。

--hints--

euler312()应该返回324681947。

assert.strictEqual(euler312(), 324681947);

--seed--

--seed-contents--

function euler312() {

  return true;
}

euler312();

--solutions--

// solution required