2.0 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			2.0 KiB
		
	
	
	
	
	
	
	
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName | 
|---|---|---|---|---|
| 5900f39e1000cf542c50feb1 | Problem 50: Consecutive prime sum | 5 | 302161 | problem-50-consecutive-prime-sum | 
--description--
The prime 41, can be written as the sum of six consecutive primes:
41 = 2 + 3 + 5 + 7 + 11 + 13
This is the longest sum of consecutive primes that adds to a prime below one-hundred.
The longest sum of consecutive primes below one-thousand that adds to a prime, contains 21 terms, and is equal to 953.
Which prime, below one-million, can be written as the sum of the most consecutive primes?
--hints--
consecutivePrimeSum(1000) should return a number.
assert(typeof consecutivePrimeSum(1000) === 'number');
consecutivePrimeSum(1000) should return 953.
assert.strictEqual(consecutivePrimeSum(1000), 953);
consecutivePrimeSum(1000000) should return 997651.
assert.strictEqual(consecutivePrimeSum(1000000), 997651);
--seed--
--seed-contents--
function consecutivePrimeSum(limit) {
  return true;
}
consecutivePrimeSum(1000000);
--solutions--
function consecutivePrimeSum(limit) {
  function isPrime(num) {
    if (num < 2) {
      return false;
    } else if (num === 2) {
      return true;
    }
    const sqrtOfNum = Math.floor(num ** 0.5);
    for (let i = 2; i <= sqrtOfNum + 1; i++) {
      if (num % i === 0) {
        return false;
      }
    }
    return true;
  }
  function getPrimes(limit) {
    const primes = [];
    for (let i = 0; i <= limit; i++) {
      if (isPrime(i)) primes.push(i);
    }
    return primes;
  }
  const primes = getPrimes(limit);
  let primeSum = [...primes];
  primeSum.reduce((acc, n, i) => {
    primeSum[i] += acc;
    return acc += n;
  }, 0);
  for (let j = primeSum.length - 1; j >= 0; j--) {
    for (let i = 0; i < j; i++) {
      const sum = primeSum[j] - primeSum[i];
      if (sum > limit) break;
      if (isPrime(sum) && primes.indexOf(sum) > -1) return sum;
    }
  }
}