* fix: clean-up Project Euler 181-200 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.4 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4231000cf542c50ff36 | Problem 183: Maximum product of parts | 5 | 301819 | problem-183-maximum-product-of-parts |
--description--
Let N be a positive integer and let N be split into k equal parts, r = \frac{N}{k}, so that N = r + r + \cdots + r.
Let P be the product of these parts, P = r × r × \cdots × r = r^k.
For example, if 11 is split into five equal parts, 11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2, then P = {2.2}^5 = 51.53632.
Let M(N) = P_{max} for a given value of N.
It turns out that the maximum for N = 11 is found by splitting eleven into four equal parts which leads to P_{max} = {(\frac{11}{4})}^4; that is, M(11) = \frac{14641}{256} = 57.19140625, which is a terminating decimal.
However, for N = 8 the maximum is achieved by splitting it into three equal parts, so M(8) = \frac{512}{27}, which is a non-terminating decimal.
Let D(N) = N if M(N) is a non-terminating decimal and D(N) = -N if M(N) is a terminating decimal.
For example, \sum D(N) for 5 ≤ N ≤ 100 is 2438.
Find \sum D(N) for 5 ≤ N ≤ 10000.
--hints--
maximumProductOfParts() should return 48861552.
assert.strictEqual(maximumProductOfParts(), 48861552);
--seed--
--seed-contents--
function maximumProductOfParts() {
return true;
}
maximumProductOfParts();
--solutions--
// solution required