* fix: clean-up Project Euler 181-200 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f42c1000cf542c50ff3f | Problem 192: Best Approximations | 5 | 301830 | problem-192-best-approximations |
--description--
Let x be a real number.
A best approximation to x for the denominator bound d is a rational number \frac{r}{s} in reduced form, with s ≤ d, such that any rational number which is closer to x than \frac{r}{s} has a denominator larger than d:
|\frac{p}{q} - x| < |\frac{r}{s} - x| ⇒ q > d
For example, the best approximation to \sqrt{13} for the denominator bound 20 is \frac{18}{5} and the best approximation to \sqrt{13} for the denominator bound 30 is \frac{101}{28}.
Find the sum of all denominators of the best approximations to \sqrt{n} for the denominator bound {10}^{12}, where n is not a perfect square and 1 < n ≤ 100000.
--hints--
bestApproximations() should return 57060635927998344.
assert.strictEqual(bestApproximations(), 57060635927998344);
--seed--
--seed-contents--
function bestApproximations() {
return true;
}
bestApproximations();
--solutions--
// solution required