* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
931 B
931 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f43e1000cf542c50ff50 | Problem 210: Obtuse Angled Triangles | 5 | 301852 | problem-210-obtuse-angled-triangles |
--description--
Consider the set S(r) of points (x,$y$) with integer coordinates satisfying |x| + |y| ≤ r.
Let O be the point (0,0) and C the point (\frac{r}{4},$\frac{r}{4}$).
Let N(r) be the number of points B in S(r), so that the triangle OBC has an obtuse angle, i.e. the largest angle α satisfies 90°<α<180°.
So, for example, N(4)=24 and N(8)=100.
What is N(1\\,000\\,000\\,000)?
--hints--
obtuseAngledTriangles() should return 1598174770174689500.
assert.strictEqual(obtuseAngledTriangles(), 1598174770174689500);
--seed--
--seed-contents--
function obtuseAngledTriangles() {
return true;
}
obtuseAngledTriangles();
--solutions--
// solution required