* fix: clean-up Project Euler 241-260 * fix: typo * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-255-rounded-square-roots.md Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
906 B
906 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f45d1000cf542c50ff70 | Problem 241: Perfection Quotients | 5 | 301888 | problem-241-perfection-quotients |
--description--
For a positive integer n, let σ(n) be the sum of all divisors of n, so e.g. σ(6) = 1 + 2 + 3 + 6 = 12.
A perfect number, as you probably know, is a number with σ(n) = 2n.
Let us define the perfection quotient of a positive integer as p(n) = \frac{σ(n)}{n}.
Find the sum of all positive integers n ≤ {10}^{18} for which p(n) has the form k + \frac{1}{2}, where k is an integer.
--hints--
perfectionQuotients() should return 482316491800641150.
assert.strictEqual(perfectionQuotients(), 482316491800641150);
--seed--
--seed-contents--
function perfectionQuotients() {
return true;
}
perfectionQuotients();
--solutions--
// solution required