* fix: clean-up Project Euler 241-260 * fix: typo * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-255-rounded-square-roots.md Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4601000cf542c50ff73 | Problem 243: Resilience | 5 | 301890 | problem-243-resilience |
--description--
A positive fraction whose numerator is less than its denominator is called a proper fraction.
For any denominator, d, there will be d−1 proper fractions; for example, with d = 12:
\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}
We shall call a fraction that cannot be cancelled down a resilient fraction.
Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = \frac{4}{11}.
In fact, d = 12 is the smallest denominator having a resilience R(d) < \frac{4}{10}.
Find the smallest denominator d, having a resilience R(d) < \frac{15\\,499}{94\\,744}.
--hints--
resilience() should return 892371480.
assert.strictEqual(resilience(), 892371480);
--seed--
--seed-contents--
function resilience() {
return true;
}
resilience();
--solutions--
// solution required