* fix: clean-up Project Euler 241-260 * fix: typo * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-255-rounded-square-roots.md Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.7 KiB
1.7 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4621000cf542c50ff75 | Problem 246: Tangents to an ellipse | 5 | 301893 | problem-246-tangents-to-an-ellipse |
--description--
A definition for an ellipse is:
Given a circle c with centre M and radius r and a point G such that d(G, M) < r, the locus of the points that are equidistant from c and G form an ellipse.
The construction of the points of the ellipse is shown below.
Given are the points M(-2000, 1500) and G(8000, 1500).
Given is also the circle c with centre M and radius 15\\,000.
The locus of the points that are equidistant from G and c form an ellipse e.
From a point P outside e the two tangents t_1 and t_2 to the ellipse are drawn.
Let the points where t_1 and t_2 touch the ellipse be R and S.
For how many lattice points P is angle RPS greater than 45°?
--hints--
tangentsToAnEllipse() should return 810834388.
assert.strictEqual(tangentsToAnEllipse(), 810834388);
--seed--
--seed-contents--
function tangentsToAnEllipse() {
return true;
}
tangentsToAnEllipse();
--solutions--
// solution required