* fix: clean-up Project Euler 241-260 * fix: typo * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-255-rounded-square-roots.md Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.0 KiB
1.0 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f46b1000cf542c50ff7d | Problem 254: Sums of Digit Factorials | 5 | 301902 | problem-254-sums-of-digit-factorials |
--description--
Define f(n) as the sum of the factorials of the digits of n. For example, f(342) = 3! + 4! + 2! = 32.
Define sf(n) as the sum of the digits of f(n). So sf(342) = 3 + 2 = 5.
Define g(i) to be the smallest positive integer n such that sf(n) = i. Though sf(342) is 5, sf(25) is also 5, and it can be verified that g(5) is 25.
Define sg(i) as the sum of the digits of g(i). So sg(5) = 2 + 5 = 7.
Further, it can be verified that g(20) is 267 and \sum sg(i) for 1 ≤ i ≤ 20 is 156.
What is \sum sg(i) for 1 ≤ i ≤ 150?
--hints--
sumsOfDigitFactorials() should return 8184523820510.
assert.strictEqual(sumsOfDigitFactorials(), 8184523820510);
--seed--
--seed-contents--
function sumsOfDigitFactorials() {
return true;
}
sumsOfDigitFactorials();
--solutions--
// solution required