1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4711000cf542c50ff84 | Problem 261: Pivotal Square Sums | 5 | 301910 | problem-261-pivotal-square-sums |
--description--
Let us call a positive integer k a square-pivot, if there is a pair of integers m > 0 and n ≥ k, such that the sum of the (m + 1) consecutive squares up to k equals the sum of the m consecutive squares from (n + 1) on:
{(k - m)}^2 + \ldots + k^2 = {(n + 1)}^2 + \ldots + {(n + m)}^2
Some small square-pivots are
$$\begin{align} & \mathbf{4}: 3^2 + \mathbf{4}^2 = 5^2 \\ & \mathbf{21}: {20}^2 + \mathbf{21}^2 = {29}^2 \\ & \mathbf{24}: {21}^2 + {22}^2 + {23}^2 + \mathbf{24}^2 = {25}^2 + {26}^2 + {27}^2 \\ & \mathbf{110}: {108}^2 + {109}^2 + \mathbf{110}^2 = {133}^2 + {134}^2 \\ \end{align}$$
Find the sum of all distinct square-pivots ≤ {10}^{10}.
--hints--
pivotalSquareSums() should return 238890850232021.
assert.strictEqual(pivotalSquareSums(), 238890850232021);
--seed--
--seed-contents--
function pivotalSquareSums() {
return true;
}
pivotalSquareSums();
--solutions--
// solution required