1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4791000cf542c50ff8c | Problem 269: Polynomials with at least one integer root | 5 | 301918 | problem-269-polynomials-with-at-least-one-integer-root |
--description--
A root or zero of a polynomial P(x) is a solution to the equation P(x) = 0.
Define P_n as the polynomial whose coefficients are the digits of n.
For example, P_{5703}(x) = 5x^3 + 7x^2 + 3.
We can see that:
P_n(0)is the last digit ofn,P_n(1)is the sum of the digits ofn,Pn(10)isnitself.
Define Z(k) as the number of positive integers, n, not exceeding k for which the polynomial P_n has at least one integer root.
It can be verified that Z(100\\,000) is 14696.
What is Z({10}^{16})?
--hints--
polynomialsWithOneIntegerRoot() should return 1311109198529286.
assert.strictEqual(polynomialsWithOneIntegerRoot(), 1311109198529286);
--seed--
--seed-contents--
function polynomialsWithOneIntegerRoot() {
return true;
}
polynomialsWithOneIntegerRoot();
--solutions--
// solution required