893 B
893 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f47e1000cf542c50ff90 | Problem 273: Sum of Squares | 5 | 301923 | problem-273-sum-of-squares |
--description--
Consider equations of the form: a^2 + b^2 = N, 0 ≤ a ≤ b, a, b and N integer.
For N = 65 there are two solutions:
a = 1, b = 8 and a = 4, b = 7.
We call S(N) the sum of the values of a of all solutions of a^2 + b^2 = N, 0 ≤ a ≤ b, a, b and N integer.
Thus S(65) = 1 + 4 = 5.
Find \sum S(N), for all squarefree N only divisible by primes of the form 4k + 1 with 4k + 1 < 150.
--hints--
sumOfSquares() should return 2032447591196869000.
assert.strictEqual(sumOfSquares(), 2032447591196869000);
--seed--
--seed-contents--
function sumOfSquares() {
return true;
}
sumOfSquares();
--solutions--
// solution required