* fix: clean-up Project Euler 281-300 * fix: missing image extension * fix: missing power Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing subscript Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
982 B
982 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f48d1000cf542c50ff9f | Problem 288: An enormous factorial | 5 | 301939 | problem-288-an-enormous-factorial |
--description--
For any prime p the number N(p,q) is defined by N(p,q) = \sum_{n=0}^q T_n \times p^n with T_n generated by the following random number generator:
$$\begin{align} & S_0 = 290797 \\ & S_{n + 1} = {S_n}^2\bmod 50\,515\,093 \\ & T_n = S_n\bmod p \end{align}$$
Let Nfac(p,q) be the factorial of N(p,q).
Let NF(p,q) be the number of factors p in Nfac(p,q).
You are given that NF(3,10000) \bmod 3^{20} = 624\\,955\\,285.
Find NF(61,{10}^7)\bmod {61}^{10}.
--hints--
enormousFactorial() should return 605857431263982000.
assert.strictEqual(enormousFactorial(), 605857431263982000);
--seed--
--seed-contents--
function enormousFactorial() {
return true;
}
enormousFactorial();
--solutions--
// solution required