* fix: clean-up Project Euler 321-340 * fix: typo * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4b01000cf542c50ffc2 | Problem 323: Bitwise-OR operations on random integers | 5 | 301980 | problem-323-bitwise-or-operations-on-random-integers |
--description--
Let y_0, y_1, y_2, \ldots be a sequence of random unsigned 32 bit integers
(i.e. 0 ≤ y_i < 2^{32}, every value equally likely).
For the sequence x_i the following recursion is given:
x_0 = 0andx_i = x_{i - 1} \mathbf{|} y_{i - 1}, fori > 0. (\mathbf{|}is the bitwise-OR operator)
It can be seen that eventually there will be an index N such that x_i = 2^{32} - 1 (a bit-pattern of all ones) for all i ≥ N.
Find the expected value of N. Give your answer rounded to 10 digits after the decimal point.
--hints--
bitwiseOrOnRandomIntegers() should return 6.3551758451.
assert.strictEqual(bitwiseOrOnRandomIntegers(), 6.3551758451);
--seed--
--seed-contents--
function bitwiseOrOnRandomIntegers() {
return true;
}
bitwiseOrOnRandomIntegers();
--solutions--
// solution required