* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4c81000cf542c50ffd9 | Problem 347: Largest integer divisible by two primes | 5 | 302006 | problem-347-largest-integer-divisible-by-two-primes |
--description--
The largest integer ≤ 100 that is only divisible by both the primes 2 and 3 is 96, as 96 = 32 \times 3 = 2^5 \times 3.
For two distinct primes p and q let M(p, q, N) be the largest positive integer ≤ N only divisible by both p and q and M(p, q, N)=0 if such a positive integer does not exist.
E.g. M(2, 3, 100) = 96.
M(3, 5, 100) = 75 and not 90 because 90 is divisible by 2, 3 and 5. Also M(2, 73, 100) = 0 because there does not exist a positive integer ≤ 100 that is divisible by both 2 and 73.
Let S(N) be the sum of all distinct M(p, q, N). S(100)=2262.
Find S(10\\,000\\,000).
--hints--
integerDivisibleByTwoPrimes() should return 11109800204052.
assert.strictEqual(integerDivisibleByTwoPrimes(), 11109800204052);
--seed--
--seed-contents--
function integerDivisibleByTwoPrimes() {
return true;
}
integerDivisibleByTwoPrimes();
--solutions--
// solution required