* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
951 B
951 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4d41000cf542c50ffe7 | Problem 360: Scary Sphere | 5 | 302021 | problem-360-scary-sphere |
--description--
Given two points (x_1, y_1, z_1) and (x_2, y_2, z_2) in three dimensional space, the Manhattan distance between those points is defined as |x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|.
Let C(r) be a sphere with radius r and center in the origin O(0, 0, 0).
Let I(r) be the set of all points with integer coordinates on the surface of C(r).
Let S(r) be the sum of the Manhattan distances of all elements of I(r) to the origin O.
E.g. S(45)=34518.
Find S({10}^{10}).
--hints--
scarySphere() should return 878825614395267100.
assert.strictEqual(scarySphere(), 878825614395267100);
--seed--
--seed-contents--
function scarySphere() {
return true;
}
scarySphere();
--solutions--
// solution required