* fix: clean-up Project Euler 361-380 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: remove unnecessary paragraph * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
903 B
903 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4e61000cf542c50fff9 | Problem 378: Triangle Triples | 5 | 302040 | problem-378-triangle-triples |
--description--
Let T(n) be the n^{\text{th}} triangle number, so T(n) = \frac{n(n + 1)}{2}.
Let dT(n) be the number of divisors of T(n). E.g.: T(7) = 28 and dT(7) = 6.
Let Tr(n) be the number of triples (i, j, k) such that 1 ≤ i < j < k ≤ n and dT(i) > dT(j) > dT(k). Tr(20) = 14, Tr(100) = 5\\,772 and Tr(1000) = 11\\,174\\,776.
Find Tr(60\\,000\\,000). Give the last 18 digits of your answer.
--hints--
triangleTriples() should return 147534623725724700.
assert.strictEqual(triangleTriples(), 147534623725724700);
--seed--
--seed-contents--
function triangleTriples() {
return true;
}
triangleTriples();
--solutions--
// solution required