* fix: clean-up Project Euler 361-380 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: remove unnecessary paragraph * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
841 B
841 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4e81000cf542c50fffa | Problem 379: Least common multiple count | 5 | 302041 | problem-379-least-common-multiple-count |
--description--
Let f(n) be the number of couples (x, y) with x and y positive integers, x ≤ y and the least common multiple of x and y equal to n.
Let g be the summatory function of f, i.e.: g(n) = \sum f(i) for 1 ≤ i ≤ n.
You are given that g({10}^6) = 37\\,429\\,395.
Find g({10}^{12}).
--hints--
leastCommonMultipleCount() should return 132314136838185.
assert.strictEqual(leastCommonMultipleCount(), 132314136838185);
--seed--
--seed-contents--
function leastCommonMultipleCount() {
return true;
}
leastCommonMultipleCount();
--solutions--
// solution required