935 B
935 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4fd1000cf542c51000f | Problem 401: Sum of squares of divisors | 5 | 302069 | problem-401-sum-of-squares-of-divisors |
--description--
The divisors of 6 are 1, 2, 3 and 6.
The sum of the squares of these numbers is 1 + 4 + 9 + 36 = 50.
Let \sigma_2(n) represent the sum of the squares of the divisors of n. Thus \sigma_2(6) = 50.
Let \Sigma_2 represent the summatory function of \sigma_2, that is \Sigma_2(n) = \sum \sigma_2(i) for i=1 to n. The first 6 values of \Sigma_2 are: 1, 6, 16, 37, 63 and 113.
Find \Sigma_2({10}^{15}) modulo {10}^9.
--hints--
sumOfSquaresDivisors() should return 281632621.
assert.strictEqual(sumOfSquaresDivisors(), 281632621);
--seed--
--seed-contents--
function sumOfSquaresDivisors() {
return true;
}
sumOfSquaresDivisors();
--solutions--
// solution required