1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4ff1000cf542c510011 | Problem 402: Integer-valued polynomials | 5 | 302070 | problem-402-integer-valued-polynomials |
--description--
It can be shown that the polynomial n^4 + 4n^3 + 2n^2 + 5n is a multiple of 6 for every integer n. It can also be shown that 6 is the largest integer satisfying this property.
Define M(a, b, c) as the maximum m such that n^4 + an^3 + bn^2 + cn is a multiple of m for all integers n. For example, M(4, 2, 5) = 6.
Also, define S(N) as the sum of M(a, b, c) for all 0 < a, b, c ≤ N.
We can verify that S(10) = 1\\,972 and S(10\\,000) = 2\\,024\\,258\\,331\\,114.
Let F_k be the Fibonacci sequence:
F_0 = 0,F_1 = 1andF_k = F_{k - 1} + F_{k - 2}fork ≥ 2.
Find the last 9 digits of \sum S(F_k) for 2 ≤ k ≤ 1\\,234\\,567\\,890\\,123.
--hints--
integerValuedPolynomials() should return 356019862.
assert.strictEqual(integerValuedPolynomials(), 356019862);
--seed--
--seed-contents--
function integerValuedPolynomials() {
return true;
}
integerValuedPolynomials();
--solutions--
// solution required