1.0 KiB
1.0 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5001000cf542c510013 | Problem 403: Lattice points enclosed by parabola and line | 5 | 302071 | problem-403-lattice-points-enclosed-by-parabola-and-line |
--description--
For integers a and b, we define D(a, b) as the domain enclosed by the parabola y = x^2 and the line y = ax + b: D(a, b) = \\{ (x, y) | x^2 ≤ y ≤ ax + b \\}.
L(a, b) is defined as the number of lattice points contained in D(a, b). For example, L(1, 2) = 8 and L(2, -1) = 1.
We also define S(N) as the sum of L(a, b) for all the pairs (a, b) such that the area of D(a, b) is a rational number and |a|,|b| ≤ N.
We can verify that S(5) = 344 and S(100) = 26\\,709\\,528.
Find S({10}^{12}). Give your answer \bmod {10}^8.
--hints--
latticePoints() should return 18224771.
assert.strictEqual(latticePoints(), 18224771);
--seed--
--seed-contents--
function latticePoints() {
return true;
}
latticePoints();
--solutions--
// solution required