1.4 KiB
1.4 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5021000cf542c510014 | Problem 405: A rectangular tiling | 5 | 302073 | problem-405-a-rectangular-tiling |
--description--
We wish to tile a rectangle whose length is twice its width.
Let T(0) be the tiling consisting of a single rectangle.
For n > 0, let T(n) be obtained from T( n- 1) by replacing all tiles in the following manner:
The following animation demonstrates the tilings T(n) for n from 0 to 5:
Let f(n) be the number of points where four tiles meet in T(n). For example, f(1) = 0, f(4) = 82 and f({10}^9)\bmod {17}^7 = 126\\,897\\,180.
Find f({10}^k) for k = {10}^{18}, give your answer modulo {17}^7.
--hints--
rectangularTiling() should return 237696125.
assert.strictEqual(rectangularTiling(), 237696125);
--seed--
--seed-contents--
function rectangularTiling() {
return true;
}
rectangularTiling();
--solutions--
// solution required