932 B
932 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5061000cf542c510017 | Problem 409: Nim Extreme | 5 | 302077 | problem-409-nim-extreme |
--description--
Let n be a positive integer. Consider nim positions where:
- There are
nnon-empty piles. - Each pile has size less than
2^n. - No two piles have the same size.
Let W(n) be the number of winning nim positions satisfying the above conditions (a position is winning if the first player has a winning strategy).
For example, W(1) = 1, W(2) = 6, W(3) = 168, W(5) = 19\\,764\\,360 and W(100)\bmod 1\\,000\\,000\\,007 = 384\\,777\\,056.
Find W(10\\,000\\,000)\bmod 1\\,000\\,000\\,007.
--hints--
nimExtreme() should return 253223948.
assert.strictEqual(nimExtreme(), 253223948);
--seed--
--seed-contents--
function nimExtreme() {
return true;
}
nimExtreme();
--solutions--
// solution required