1.5 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5141000cf542c510027 | Problem 423: Consecutive die throws | 5 | 302093 | problem-423-consecutive-die-throws |
--description--
Let n be a positive integer.
A 6-sided die is thrown n times. Let c be the number of pairs of consecutive throws that give the same value.
For example, if n = 7 and the values of the die throws are (1, 1, 5, 6, 6, 6, 3), then the following pairs of consecutive throws give the same value:
$$\begin{align} & (\underline{1}, \underline{1}, 5, 6, 6, 6, 3) \\ & (1, 1, 5, \underline{6}, \underline{6}, 6, 3) \\ & (1, 1, 5, 6, \underline{6}, \underline{6}, 3) \end{align}$$
Therefore, c = 3 for (1, 1, 5, 6, 6, 6, 3).
Define C(n) as the number of outcomes of throwing a 6-sided die n times such that c does not exceed π(n).1
For example, C(3) = 216, C(4) = 1290, C(11) = 361\\,912\\,500 and C(24) = 4\\,727\\,547\\,363\\,281\\,250\\,000.
Define S(L) as \sum C(n) for 1 ≤ n ≤ L.
For example, S(50)\bmod 1\\,000\\,000\\,007 = 832\\,833\\,871.
Find S(50\\,000\\,000)\bmod 1\\,000\\,000\\,007.
1 π denotes the prime-counting function, i.e. π(n) is the number of primes ≤ n.
--hints--
consecutiveDieThrows() should return 653972374.
assert.strictEqual(consecutiveDieThrows(), 653972374);
--seed--
--seed-contents--
function consecutiveDieThrows() {
return true;
}
consecutiveDieThrows();
--solutions--
// solution required