1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5181000cf542c51002a | Problem 427: n-sequences | 5 | 302097 | problem-427-n-sequences |
--description--
A sequence of integers S = \\{s_i\\} is called an $n$-sequence if it has n elements and each element s_i satisfies 1 ≤ s_i ≤ n. Thus there are n^n distinct $n$-sequences in total.
For example, the sequence S = \\{1, 5, 5, 10, 7, 7, 7, 2, 3, 7\\} is a 10-sequence.
For any sequence S, let L(S) be the length of the longest contiguous subsequence of S with the same value. For example, for the given sequence S above, L(S) = 3, because of the three consecutive 7's.
Let f(n) = \sum L(S) for all $n$-sequences S.
For example, f(3) = 45, f(7) = 1\\,403\\,689 and f(11) = 481\\,496\\,895\\,121.
Find f(7\\,500\\,000)\bmod 1\\,000\\,000\\,009.
--hints--
nSequences() should return 97138867.
assert.strictEqual(nSequences(), 97138867);
--seed--
--seed-contents--
function nSequences() {
return true;
}
nSequences();
--solutions--
// solution required