1.5 KiB
1.5 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5241000cf542c510037 | Problem 440: GCD and Tiling | 5 | 302112 | problem-440-gcd-and-tiling |
--description--
We want to tile a board of length n and height 1 completely, with either 1 × 2 blocks or 1 × 1 blocks with a single decimal digit on top:
For example, here are some of the ways to tile a board of length n = 8:
Let T(n) be the number of ways to tile a board of length n as described above.
For example, T(1) = 10 and T(2) = 101.
Let S(L) be the triple sum \sum_{a, b, c} gcd(T(c^a), T(c^b)) for 1 ≤ a, b, c ≤ L.
For example:
$$\begin{align} & S(2) = 10\,444 \\ & S(3) = 1\,292\,115\,238\,446\,807\,016\,106\,539\,989 \\ & S(4)\bmod 987\,898\,789 = 670\,616\,280. \end{align}$$
Find S(2000)\bmod 987\\,898\\,789.
--hints--
gcdAndTiling() should return 970746056.
assert.strictEqual(gcdAndTiling(), 970746056);
--seed--
--seed-contents--
function gcdAndTiling() {
return true;
}
gcdAndTiling();
--solutions--
// solution required