* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.0 KiB
1.0 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f52a1000cf542c51003c | Problem 445: Retractions A | 5 | 302117 | problem-445-retractions-a |
--description--
For every integer n > 1, the family of functions f_{n, a, b} is defined by:
f_{n, a, b}(x) ≡ ax + b\bmod n for a, b, x integer and 0 \lt a \lt n, 0 \le b \lt n, 0 \le x \lt n.
We will call f_{n, a, b} a retraction if f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n for every 0 \le x \lt n.
Let R(n) be the number of retractions for n.
You are given that
\sum_{k = 1}^{99\\,999} R(\displaystyle\binom{100\\,000}{k}) \equiv 628\\,701\\,600\bmod 1\\,000\\,000\\,007
Find \sum_{k = 1}^{9\\,999\\,999} R(\displaystyle\binom{10\\,000\\,000}{k}) Give your answer modulo 1\\,000\\,000\\,007.
--hints--
retractionsA() should return 659104042.
assert.strictEqual(retractionsA(), 659104042);
--seed--
--seed-contents--
function retractionsA() {
return true;
}
retractionsA();
--solutions--
// solution required