* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.3 KiB
1.3 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5311000cf542c510044 | Problem 453: Lattice Quadrilaterals | 5 | 302126 | problem-453-lattice-quadrilaterals |
--description--
A simple quadrilateral is a polygon that has four distinct vertices, has no straight angles and does not self-intersect.
Let Q(m, n) be the number of simple quadrilaterals whose vertices are lattice points with coordinates (x, y) satisfying 0 ≤ x ≤ m and 0 ≤ y ≤ n.
For example, Q(2, 2) = 94 as can be seen below:
It can also be verified that Q(3, 7) = 39\\,590, Q(12, 3) = 309\\,000 and Q(123, 45) = 70\\,542\\,215\\,894\\,646.
Find Q(12\\,345, 6\\,789)\bmod 135\\,707\\,531.
--hints--
latticeQuadrilaterals() should return 104354107.
assert.strictEqual(latticeQuadrilaterals(), 104354107);
--seed--
--seed-contents--
function latticeQuadrilaterals() {
return true;
}
latticeQuadrilaterals();
--solutions--
// solution required