* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
846 B
846 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5361000cf542c510048 | Problem 457: A polynomial modulo the square of a prime | 5 | 302131 | problem-457-a-polynomial-modulo-the-square-of-a-prime |
--description--
Let f(n) = n^2 - 3n - 1.
Let p be a prime.
Let R(p) be the smallest positive integer n such that f(n)\bmod p^2 = 0 if such an integer n exists, otherwise R(p) = 0.
Let SR(L) be \sum R(p) for all primes not exceeding L.
Find SR({10}^7).
--hints--
polynomialModuloSquareOfPrime() should return 2647787126797397000.
assert.strictEqual(polynomialModuloSquareOfPrime(), 2647787126797397000);
--seed--
--seed-contents--
function polynomialModuloSquareOfPrime() {
return true;
}
polynomialModuloSquareOfPrime();
--solutions--
// solution required