* fix: clean-up Project Euler 462-480 * fix: missing image extension * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.0 KiB
1.0 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f54b1000cf542c51005d | Problem 479: Roots on the Rise | 5 | 302156 | problem-479-roots-on-the-rise |
--description--
Let a_k, b_k, and c_k represent the three solutions (real or complex numbers) to the expression \frac{1}{x} = {\left(\frac{k}{x} \right)}^2 (k + x^2) - kx.
For instance, for k = 5, we see that \\{a_5, b_5, c_5\\} is approximately \\{5.727244, -0.363622 + 2.057397i, -0.363622 - 2.057397i\\}.
Let S(n) = \displaystyle\sum_{p = 1}^n \sum_{k = 1}^n {(a_k + b_k)}^p {(b_k + c_k)}^p {(c_k + a_k)}^p for all integers p, k such that 1 ≤ p, k ≤ n.
Interestingly, S(n) is always an integer. For example, S(4) = 51\\,160.
Find S({10}^6) \text{ modulo } 1\\,000\\,000\\,007.
--hints--
rootsOnTheRise() should return 191541795.
assert.strictEqual(rootsOnTheRise(), 191541795);
--seed--
--seed-contents--
function rootsOnTheRise() {
return true;
}
rootsOnTheRise();
--solutions--
// solution required