* fix(curriculum): tests quotes * fix(curriculum): fill seed-teardown * fix(curriculum): fix tests and remove unneeded seed-teardown
		
			
				
	
	
		
			80 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4ed1000cf542c50fffe
 | ||
| challengeType: 5
 | ||
| title: 'Problem 384: Rudin-Shapiro sequence'
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id='description'>
 | ||
| Define the sequence a(n) as the number of adjacent pairs of ones in the binary expansion of n (possibly overlapping).
 | ||
| E.g.: a(5) = a(1012) = 0, a(6) = a(1102) = 1, a(7) = a(1112) = 2
 | ||
| 
 | ||
| Define the sequence b(n) = (-1)a(n).
 | ||
| This sequence is called the Rudin-Shapiro sequence.
 | ||
| Also consider the summatory sequence of b(n): .
 | ||
| 
 | ||
| The first couple of values of these sequences are:
 | ||
| n        0     1     2     3     4     5     6     7
 | ||
| a(n)     0     0     0     1     0     0     1     2
 | ||
| b(n)     1     1     1    -1     1     1    -1     1
 | ||
| s(n)     1     2     3     2     3     4     3     4
 | ||
| 
 | ||
| The sequence s(n) has the remarkable property that all elements are positive and every positive integer k occurs exactly k times.
 | ||
| 
 | ||
| Define g(t,c), with 1 ≤ c ≤ t, as the index in s(n) for which t occurs for the c'th time in s(n).
 | ||
| E.g.: g(3,3) = 6, g(4,2) = 7 and g(54321,12345) = 1220847710.
 | ||
| 
 | ||
| Let F(n) be the fibonacci sequence defined by:
 | ||
| F(0)=F(1)=1 and
 | ||
| F(n)=F(n-1)+F(n-2) for n>1.
 | ||
| 
 | ||
| Define GF(t)=g(F(t),F(t-1)).
 | ||
| 
 | ||
| Find ΣGF(t) for 2≤t≤45.
 | ||
| </section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id='instructions'>
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>euler384()</code> should return 3354706415856333000.
 | ||
|     testString: assert.strictEqual(euler384(), 3354706415856333000, '<code>euler384()</code> should return 3354706415856333000.');
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler384() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler384();
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| </section>
 |