1.0 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.0 KiB
		
	
	
	
	
	
	
	
title
| title | 
|---|
| Exponentiation | 
Exponentiation
Given two integers a and n, write a function to compute a^n.
Code
Algorithmic Paradigm: Divide and conquer.
int power(int x, unsigned int y) { 
    if (y == 0) 
        return 1; 
    else if (y%2 == 0) 
        return power(x, y/2)*power(x, y/2); 
    else
        return x*power(x, y/2)*power(x, y/2); 
} 
Time Complexity: O(n) | Space Complexity: O(1)
Optimized Solution: O(logn)
int power(int x, unsigned int y) { 
    int temp; 
    if( y == 0) 
        return 1; 
    temp = power(x, y/2); 
    if (y%2 == 0) 
        return temp*temp; 
    else
        return x*temp*temp; 
} 
Modular Exponentiation
Given three numbers x, y, and p, compute (x^y) % p
int power(int x, unsigned int y, int p) { 
    int res = 1;  
    x = x % p; 
    while (y > 0) {  
        if (y & 1) 
            res = (res*x) % p; 
  
        // y must be even now 
        y = y>>1; 
        x = (x*x) % p;   
    } 
    return res; 
} 
Time Complexity: O(Log y).