Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-74-digit-factorial-chains.english.md
mrugesh 22afc2a0ca feat(learn): python certification projects (#38216)
Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
2020-05-27 13:19:08 +05:30

84 lines
1.8 KiB
Markdown

---
id: 5900f3b61000cf542c50fec9
challengeType: 5
isHidden: false
title: 'Problem 74: Digit factorial chains'
forumTopicId: 302187
---
## Description
<section id='description'>
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:
<div style='margin-left: 4em;'>1! + 4! + 5! = 1 + 24 + 120 = 145</div>
Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:
<div style='margin-left: 4em;'>
169 → 363601 → 1454 → 169<br>
871 → 45361 → 871<br>
872 → 45362 → 872<br>
</div>
It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,
<div style='margin-left: 4em;'>
69 → 363600 → 1454 → 169 → 363601 (→ 1454)<br>
78 → 45360 → 871 → 45361 (→ 871)<br>
540 → 145 (→ 145)<br>
</div>
Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.
How many chains, with a starting number below one million, contain exactly sixty non-repeating terms?
</section>
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
tests:
- text: <code>digitFactorialChains()</code> should return a number.
testString: assert(typeof digitFactorialChains() === 'number');
- text: <code>digitFactorialChains()</code> should return 402.
testString: assert.strictEqual(digitFactorialChains(), 402);
```
</section>
## Challenge Seed
<section id='challengeSeed'>
<div id='js-seed'>
```js
function digitFactorialChains() {
// Good luck!
return true;
}
digitFactorialChains();
```
</div>
</section>
## Solution
<section id='solution'>
```js
// solution required
```
</section>