Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-416-a-frogs-trip.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.0 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f50e1000cf542c510020 Problem 416: A frog's trip 5 302085 problem-416-a-frogs-trip

--description--

A row of n squares contains a frog in the leftmost square. By successive jumps the frog goes to the rightmost square and then back to the leftmost square. On the outward trip he jumps one, two or three squares to the right, and on the homeward trip he jumps to the left in a similar manner. He cannot jump outside the squares. He repeats the round-trip travel m times.

Let F(m, n) be the number of the ways the frog can travel so that at most one square remains unvisited. For example, F(1, 3) = 4, F(1, 4) = 15, F(1, 5) = 46, F(2, 3) = 16 and F(2, 100) mod 109 = 429619151.

Find the last 9 digits of F(10, 1012).

--hints--

euler416() should return 898082747.

assert.strictEqual(euler416(), 898082747);

--seed--

--seed-contents--

function euler416() {

  return true;
}

euler416();

--solutions--

// solution required