Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-311-biclinic-integral-quadrilaterals.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

49 lines
1.0 KiB
Markdown

---
id: 5900f4a31000cf542c50ffb6
title: 'Problem 311: Biclinic Integral Quadrilaterals'
challengeType: 5
forumTopicId: 301967
dashedName: problem-311-biclinic-integral-quadrilaterals
---
# --description--
ABCD is a convex, integer sided quadrilateral with 1 ≤ AB &lt; BC &lt; CD &lt; AD.
BD has integer length. O is the midpoint of BD. AO has integer length.
We'll call ABCD a biclinic integral quadrilateral if AO = CO ≤ BO = DO.
For example, the following quadrilateral is a biclinic integral quadrilateral: AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.
Let B(N) be the number of distinct biclinic integral quadrilaterals ABCD that satisfy AB2+BC2+CD2+AD2 ≤ N. We can verify that B(10 000) = 49 and B(1 000 000) = 38239.
Find B(10 000 000 000).
# --hints--
`euler311()` should return 2466018557.
```js
assert.strictEqual(euler311(), 2466018557);
```
# --seed--
## --seed-contents--
```js
function euler311() {
return true;
}
euler311();
```
# --solutions--
```js
// solution required
```