Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-409-nim-extreme.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

865 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f5061000cf542c510017 Problem 409: Nim Extreme 5 302077 problem-409-nim-extreme

--description--

Let n be a positive integer. Consider nim positions where:There are n non-empty piles.

Each pile has size less than 2n.

No two piles have the same size.

Let W(n) be the number of winning nim positions satisfying the above

conditions (a position is winning if the first player has a winning strategy). For example, W(1) = 1, W(2) = 6, W(3) = 168, W(5) = 19764360 and W(100) mod 1 000 000 007 = 384777056.

Find W(10 000 000) mod 1 000 000 007.

--hints--

euler409() should return 253223948.

assert.strictEqual(euler409(), 253223948);

--seed--

--seed-contents--

function euler409() {

  return true;
}

euler409();

--solutions--

// solution required