Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-466-distinct-terms-in-a-multiplication-table.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

837 B
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f53e1000cf542c510051 Problem 466: Distinct terms in a multiplication table 5 302141 problem-466-distinct-terms-in-a-multiplication-table

--description--

Let P(m,n) be the number of distinct terms in an m×n multiplication table.

For example, a 3×4 multiplication table looks like this:

× 12341 12342 24683 36912

There are 8 distinct terms {1,2,3,4,6,8,9,12}, therefore P(3,4) = 8.

You are given that: P(64,64) = 1263, P(12,345) = 1998, and P(32,1015) = 13826382602124302.

Find P(64,1016).

--hints--

euler466() should return 258381958195474750.

assert.strictEqual(euler466(), 258381958195474750);

--seed--

--seed-contents--

function euler466() {

  return true;
}

euler466();

--solutions--

// solution required