* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
45 lines
885 B
Markdown
45 lines
885 B
Markdown
---
|
||
id: 5900f5411000cf542c510054
|
||
title: 问题468:二项式系数的平滑除数
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-468-smooth-divisors-of-binomial-coefficients
|
||
---
|
||
|
||
# --description--
|
||
|
||
如果没有一个整数因子大于B,则整数称为B-smooth。
|
||
|
||
设SB(n)是n的最大B-平滑除数。示例:S1(10)= 1 S4(2100)= 12 S17(2496144)= 5712
|
||
|
||
定义F(n)=Σ1≤B≤nΣ0≤r≤nSB(C(n,r))。这里,C(n,r)表示二项式系数。示例:F(11)= 3132 F(1 111)mod 1 000 000 993 = 706036312 F(111 111)mod 1 000 000 993 = 22156169
|
||
|
||
求F(11 111 111)mod 1 000 000 993。
|
||
|
||
# --hints--
|
||
|
||
`euler468()`应该返回852950321。
|
||
|
||
```js
|
||
assert.strictEqual(euler468(), 852950321);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler468() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler468();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|