Files
freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/rosetta-code/circles-of-given-radius-through-two-points.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

126 lines
4.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5951815dd895584b06884620
title: 给定半径的圆圈通过两个点
challengeType: 5
videoUrl: ''
dashedName: circles-of-given-radius-through-two-points
---
# --description--
<p>给定平面上的两个点和半径,通常可以通过这些点绘制给定半径的两个圆。 </p>例外:零半径应视为从不描述圆(除非点是重合的)。如果这些点是重合的,则可以绘制无限数量的圆,其圆周上的点可以被绘制,除非半径也等于零,然后将圆圈折叠到一个点。如果点形成直径,则返回单个圆。如果这些点相距太远则无法绘制圆圈。任务:实现一个取两个点和一个半径的函数,并通过这些点返回两个圆。对于每个结果圆,提供每个圆的中心的坐标,四舍五入到四个十进制数字。将每个坐标作为数组返回,并作为数组数组进行坐标。对于边缘情况,请返回以下内容:如果点在直径上,则返回一个点。如果半径也为零,则返回<code>"Radius Zero"</code> 。如果点重合,则返回<code>"Coincident point. Infinite solutions"</code> 。如果点与直径相距更远,则返回<code>"No intersection. Points further apart than circle diameter"</code>更远的<code>"No intersection. Points further apart than circle diameter"</code> 。样本输入: <pre> p1 p2 r
0.1234,0.9876 0.8765,0.2345 2.0
0.0000,2.000000 0.0000,0.0000 1.0
0.1234,0.9876 0.1234,0.9876 2.0
0.1234,0.9876 0.8765,0.2345 0.5
0.1234,0.9876 0.1234,0.9876 0.0
</pre>参考:从数学论坛@Drexel的<a href='http://mathforum.org/library/drmath/view/53027.html' title='链接http//mathforum.org/library/drmath/view/53027.html'>2点和半径中找到一个</a>圆心
# --hints--
`getCircles`是一个函数。
```js
assert(typeof getCircles === 'function');
```
`getCircles([0.1234, 0.9876], [0.8765, 0.2345], 2.0)`应该返回`[[1.8631, 1.9742], [-0.8632, -0.7521]]`
```js
assert.deepEqual(getCircles(...testCases[0]), answers[0]);
```
`getCircles([0.0000, 2.0000], [0.0000, 0.0000], 1.0)`应该返回`[0, 1]`
```js
assert.deepEqual(getCircles(...testCases[1]), answers[1]);
```
`getCircles([0.1234, 0.9876], [0.1234, 0.9876], 2.0)`应返回`Coincident point. Infinite solutions`
```js
assert.deepEqual(getCircles(...testCases[2]), answers[2]);
```
`getCircles([0.1234, 0.9876], [0.8765, 0.2345], 0.5)`应返回`No intersection. Points further apart than circle diameter`
```js
assert.deepEqual(getCircles(...testCases[3]), answers[3]);
```
`getCircles([0.1234, 0.9876], [0.1234, 0.9876], 0.0)`应返回`Radius Zero`
```js
assert.deepEqual(getCircles(...testCases[4]), answers[4]);
```
# --seed--
## --after-user-code--
```js
const testCases = [
[[0.1234, 0.9876], [0.8765, 0.2345], 2.0],
[[0.0000, 2.0000], [0.0000, 0.0000], 1.0],
[[0.1234, 0.9876], [0.1234, 0.9876], 2.0],
[[0.1234, 0.9876], [0.8765, 0.2345], 0.5],
[[0.1234, 0.9876], [0.1234, 0.9876], 0.0]
];
const answers = [
[[1.8631, 1.9742], [-0.8632, -0.7521]],
[0, 1],
'Coincident point. Infinite solutions',
'No intersection. Points further apart than circle diameter',
'Radius Zero'
];
```
## --seed-contents--
```js
function getCircles(...args) {
return true;
}
```
# --solutions--
```js
const hDist = (p1, p2) => Math.hypot(...p1.map((e, i) => e - p2[i])) / 2;
const pAng = (p1, p2) => Math.atan(p1.map((e, i) => e - p2[i]).reduce((p, c) => c / p, 1));
const solveF = (p, r) => t => [parseFloat((r * Math.cos(t) + p[0]).toFixed(4)), parseFloat((r * Math.sin(t) + p[1]).toFixed(4))];
const diamPoints = (p1, p2) => p1.map((e, i) => parseFloat((e + (p2[i] - e) / 2).toFixed(4)));
function getCircles(...args) {
const [p1, p2, s] = args;
const solve = solveF(p1, s);
const halfDist = hDist(p1, p2);
let msg = [];
switch (Math.sign(s - halfDist)) {
case 0:
msg = s ? diamPoints(p1, p2) :
'Radius Zero';
break;
case 1:
if (!halfDist) {
msg = 'Coincident point. Infinite solutions';
}
else {
const theta = pAng(p1, p2);
const theta2 = Math.acos(halfDist / s);
[1, -1].map(e => solve(theta + e * theta2)).forEach(
e => msg.push(e));
}
break;
case -1:
msg = 'No intersection. Points further apart than circle diameter';
break;
default:
msg = 'Reached the default';
}
return msg;
}
```