* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4a61000cf542c50ffb8 | Problem 313: Sliding game | 5 | 301969 | problem-313-sliding-game |
--description--
In a sliding game a counter may slide horizontally or vertically into an empty space. The objective of the game is to move the red counter from the top left corner of a grid to the bottom right corner; the space always starts in the bottom right corner. For example, the following sequence of pictures show how the game can be completed in five moves on a 2 by 2 grid.
Let S(m,n) represent the minimum number of moves to complete the game on an m by n grid. For example, it can be verified that S(5,4) = 25.
There are exactly 5482 grids for which S(m,n) = p2, where p < 100 is prime.
How many grids does S(m,n) = p2, where p < 106 is prime?
--hints--
euler313()
should return 2057774861813004.
assert.strictEqual(euler313(), 2057774861813004);
--seed--
--seed-contents--
function euler313() {
return true;
}
euler313();
--solutions--
// solution required