32 lines
1.1 KiB
Markdown
32 lines
1.1 KiB
Markdown
---
|
||
id: 5900f4691000cf542c50ff7b
|
||
title: 问题252:凸孔
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
---
|
||
|
||
# --description--
|
||
|
||
给定平面上的一组点,我们将凸孔定义为凸多边形,其具有作为顶点的任何给定点并且不包含其内部中的任何给定点(除了顶点之外,其他给定点可能位于在多边形的周长上)。
|
||
|
||
作为示例,下面的图像示出了一组二十个点和一些这样的凸孔。显示为红色七边形的凸孔具有等于1049694.5平方单位的面积,这是给定点集上的凸孔的最高可能区域。
|
||
|
||
对于我们的例子,我们使用前20个点(T2k-1,T2k),对于k = 1,2,...,20,使用伪随机数生成器生成:
|
||
|
||
S0 = 290797 Sn + 1 = Sn2 mod 50515093 Tn =(Sn mod 2000)-1000
|
||
|
||
即(527,144),( - 488,732),( - 454,-947),......
|
||
|
||
包含伪随机序列中前500个点的集合上凸孔的最大面积是多少?指定您的答案,包括小数点后的一位数。
|
||
|
||
# --hints--
|
||
|
||
`euler252()`应该返回104924。
|
||
|
||
```js
|
||
assert.strictEqual(euler252(), 104924);
|
||
```
|
||
|
||
# --solutions--
|
||
|