318 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 594810f028c0303b75339ad7
 | 
						|
title: Zhang-Suen thinning algorithm
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 302347
 | 
						|
dashedName: zhang-suen-thinning-algorithm
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of:
 | 
						|
 | 
						|
<!-- TODO write fully in markdown>
 | 
						|
<!-- markdownlint-disable -->
 | 
						|
 | 
						|
<pre>
 | 
						|
 #################                   #############
 | 
						|
 ##################               ################
 | 
						|
 ###################            ##################
 | 
						|
 ########     #######          ###################
 | 
						|
   ######     #######         #######       ######
 | 
						|
   ######     #######        #######
 | 
						|
   #################         #######
 | 
						|
   ################          #######
 | 
						|
   #################         #######
 | 
						|
   ######     #######        #######
 | 
						|
   ######     #######        #######
 | 
						|
   ######     #######         #######       ######
 | 
						|
 ########     #######          ###################
 | 
						|
 ########     ####### ######    ################## ######
 | 
						|
 ########     ####### ######      ################ ######
 | 
						|
 ########     ####### ######         ############# ######
 | 
						|
</pre>
 | 
						|
 | 
						|
It produces the thinned output:
 | 
						|
 | 
						|
<pre>
 | 
						|
 | 
						|
    # ##########                       #######
 | 
						|
     ##        #                   ####       #
 | 
						|
     #          #                 ##
 | 
						|
     #          #                #
 | 
						|
     #          #                #
 | 
						|
     #          #                #
 | 
						|
     ############               #
 | 
						|
     #          #               #
 | 
						|
     #          #                #
 | 
						|
     #          #                #
 | 
						|
     #          #                #
 | 
						|
     #                            ##
 | 
						|
     #                             ############
 | 
						|
                       ###                          ###
 | 
						|
 | 
						|
</pre>
 | 
						|
 | 
						|
<h2>Algorithm</h2>
 | 
						|
 | 
						|
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:
 | 
						|
 | 
						|
<table border="3">
 | 
						|
  <tr><td style="text-align: center;">P9</td><td style="text-align: center;">P2</td><td style="text-align: center;">P3</td></tr>
 | 
						|
  <tr><td style="text-align: center;">P8</td><td style="text-align: center;"><strong>P1</strong></td><td style="text-align: center;">P4</td></tr>
 | 
						|
  <tr><td style="text-align: center;">P7</td><td style="text-align: center;">P6</td><td style="text-align: center;">P5</td></tr>
 | 
						|
</table>
 | 
						|
 | 
						|
Obviously the boundary pixels of the image cannot have the full eight neighbours.
 | 
						|
 | 
						|
<ul>
 | 
						|
  <li>Define $A(P1)$ = the number of transitions from white to black, (0 -> 1) in the sequence P2, P3, P4, P5, P6, P7, P8, P9, P2. (Note the extra P2 at the end - it is circular).</li>
 | 
						|
  <li>Define $B(P1)$ = the number of black pixel neighbours of P1. ( = sum(P2 .. P9) )</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
**Step 1:**
 | 
						|
 | 
						|
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. <ol>
 | 
						|
    <li>The pixel is black and has eight neighbours</li>
 | 
						|
    <li>$2 <= B(P1) <= 6$</li>
 | 
						|
    <li>$A(P1) = 1$</li>
 | 
						|
    <li>At least one of <strong>P2, P4 and P6</strong> is white</li>
 | 
						|
    <li>At least one of <strong>P4, P6 and P8</strong> is white</li>
 | 
						|
  </ol>
 | 
						|
 | 
						|
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
 | 
						|
 | 
						|
**Step 2:**
 | 
						|
 | 
						|
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. <ol>
 | 
						|
    <li>The pixel is black and has eight neighbours</li>
 | 
						|
    <li>$2 <= B(P1) <= 6$</li>
 | 
						|
    <li>$A(P1) = 1$</li>
 | 
						|
    <li>At least one of <strong>P2, P4 and P8</strong> is white</li>
 | 
						|
    <li>At least one of <strong>P2, P6 and P8</strong> is white</li>
 | 
						|
  </ol>
 | 
						|
 | 
						|
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
 | 
						|
 | 
						|
**Iteration:**
 | 
						|
 | 
						|
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
 | 
						|
 | 
						|
# --instructions--
 | 
						|
 | 
						|
Write a routine to perform Zhang-Suen thinning on the provided image matrix.
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`thinImage` should be a function.
 | 
						|
 | 
						|
```js
 | 
						|
assert.equal(typeof thinImage, 'function');
 | 
						|
```
 | 
						|
 | 
						|
`thinImage` should return an array.
 | 
						|
 | 
						|
```js
 | 
						|
assert(Array.isArray(result));
 | 
						|
```
 | 
						|
 | 
						|
`thinImage` should return an array of strings.
 | 
						|
 | 
						|
```js
 | 
						|
assert.equal(typeof result[0], 'string');
 | 
						|
```
 | 
						|
 | 
						|
`thinImage` should return an array of strings.
 | 
						|
 | 
						|
```js
 | 
						|
assert.deepEqual(result, expected);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --after-user-code--
 | 
						|
 | 
						|
```js
 | 
						|
const imageForTests = [
 | 
						|
  '                                                          ',
 | 
						|
  ' #################                   #############        ',
 | 
						|
  ' ##################               ################        ',
 | 
						|
  ' ###################            ##################        ',
 | 
						|
  ' ########     #######          ###################        ',
 | 
						|
  '   ######     #######         #######       ######        ',
 | 
						|
  '   ######     #######        #######                      ',
 | 
						|
  '   #################         #######                      ',
 | 
						|
  '   ################          #######                      ',
 | 
						|
  '   #################         #######                      ',
 | 
						|
  '   ######     #######        #######                      ',
 | 
						|
  '   ######     #######        #######                      ',
 | 
						|
  '   ######     #######         #######       ######        ',
 | 
						|
  ' ########     #######          ###################        ',
 | 
						|
  ' ########     ####### ######    ################## ###### ',
 | 
						|
  ' ########     ####### ######      ################ ###### ',
 | 
						|
  ' ########     ####### ######         ############# ###### ',
 | 
						|
  '                                                          '];
 | 
						|
const expected = [
 | 
						|
  '                                                          ',
 | 
						|
  '                                                          ',
 | 
						|
  '    # ##########                       #######            ',
 | 
						|
  '     ##        #                   ####       #           ',
 | 
						|
  '     #          #                 ##                      ',
 | 
						|
  '     #          #                #                        ',
 | 
						|
  '     #          #                #                        ',
 | 
						|
  '     #          #                #                        ',
 | 
						|
  '     ############               #                         ',
 | 
						|
  '     #          #               #                         ',
 | 
						|
  '     #          #                #                        ',
 | 
						|
  '     #          #                #                        ',
 | 
						|
  '     #          #                #                        ',
 | 
						|
  '     #                            ##                      ',
 | 
						|
  '     #                             ############           ',
 | 
						|
  '                       ###                          ###   ',
 | 
						|
  '                                                          ',
 | 
						|
  '                                                          '
 | 
						|
];
 | 
						|
const result = thinImage(imageForTests);
 | 
						|
```
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
const testImage = [
 | 
						|
  '                                                          ',
 | 
						|
  ' #################                   #############        ',
 | 
						|
  ' ##################               ################        ',
 | 
						|
  ' ###################            ##################        ',
 | 
						|
  ' ########     #######          ###################        ',
 | 
						|
  '   ######     #######         #######       ######        ',
 | 
						|
  '   ######     #######        #######                      ',
 | 
						|
  '   #################         #######                      ',
 | 
						|
  '   ################          #######                      ',
 | 
						|
  '   #################         #######                      ',
 | 
						|
  '   ######     #######        #######                      ',
 | 
						|
  '   ######     #######        #######                      ',
 | 
						|
  '   ######     #######         #######       ######        ',
 | 
						|
  ' ########     #######          ###################        ',
 | 
						|
  ' ########     ####### ######    ################## ###### ',
 | 
						|
  ' ########     ####### ######      ################ ###### ',
 | 
						|
  ' ########     ####### ######         ############# ###### ',
 | 
						|
  '                                                          '];
 | 
						|
 | 
						|
function thinImage(image) {
 | 
						|
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
function Point(x, y) {
 | 
						|
  this.x = x;
 | 
						|
  this.y = y;
 | 
						|
}
 | 
						|
 | 
						|
const ZhangSuen = (function () {
 | 
						|
  function ZhangSuen() {
 | 
						|
  }
 | 
						|
 | 
						|
  ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
 | 
						|
 | 
						|
  ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
 | 
						|
 | 
						|
  ZhangSuen.toWhite = [];
 | 
						|
 | 
						|
  ZhangSuen.main = function (image) {
 | 
						|
    ZhangSuen.grid = new Array(image);
 | 
						|
    for (let r = 0; r < image.length; r++) {
 | 
						|
      ZhangSuen.grid[r] = image[r].split('');
 | 
						|
    }
 | 
						|
    ZhangSuen.thinImage();
 | 
						|
    return ZhangSuen.getResult();
 | 
						|
  };
 | 
						|
 | 
						|
  ZhangSuen.thinImage = function () {
 | 
						|
    let firstStep = false;
 | 
						|
    let hasChanged;
 | 
						|
    do {
 | 
						|
      hasChanged = false;
 | 
						|
      firstStep = !firstStep;
 | 
						|
      for (let r = 1; r < ZhangSuen.grid.length - 1; r++) {
 | 
						|
        for (let c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
 | 
						|
          if (ZhangSuen.grid[r][c] !== '#') {
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          const nn = ZhangSuen.numNeighbors(r, c);
 | 
						|
          if (nn < 2 || nn > 6) {
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          if (ZhangSuen.numTransitions(r, c) !== 1) {
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1)) {
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          ZhangSuen.toWhite.push(new Point(c, r));
 | 
						|
          hasChanged = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
 | 
						|
        const p = ZhangSuen.toWhite[i];
 | 
						|
        ZhangSuen.grid[p.y][p.x] = ' ';
 | 
						|
      }
 | 
						|
      ZhangSuen.toWhite = [];
 | 
						|
    } while ((firstStep || hasChanged));
 | 
						|
  };
 | 
						|
 | 
						|
  ZhangSuen.numNeighbors = function (r, c) {
 | 
						|
    let count = 0;
 | 
						|
    for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
 | 
						|
      if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#') {
 | 
						|
        count++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
  };
 | 
						|
 | 
						|
  ZhangSuen.numTransitions = function (r, c) {
 | 
						|
    let count = 0;
 | 
						|
    for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
 | 
						|
      if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
 | 
						|
        if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#') {
 | 
						|
          count++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
  };
 | 
						|
 | 
						|
  ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
 | 
						|
    let count = 0;
 | 
						|
    const group = ZhangSuen.nbrGroups[step];
 | 
						|
    for (let i = 0; i < 2; i++) {
 | 
						|
      for (let j = 0; j < group[i].length; j++) {
 | 
						|
        const nbr = ZhangSuen.nbrs[group[i][j]];
 | 
						|
        if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
 | 
						|
          count++;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return count > 1;
 | 
						|
  };
 | 
						|
 | 
						|
  ZhangSuen.getResult = function () {
 | 
						|
    const result = [];
 | 
						|
    for (let i = 0; i < ZhangSuen.grid.length; i++) {
 | 
						|
      const row = ZhangSuen.grid[i].join('');
 | 
						|
      result.push(row);
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
  };
 | 
						|
  return ZhangSuen;
 | 
						|
}());
 | 
						|
 | 
						|
function thinImage(image) {
 | 
						|
  return ZhangSuen.main(image);
 | 
						|
}
 | 
						|
```
 |