Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-325-stone-game-ii.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.5 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4b11000cf542c50ffc4 Problem 325: Stone Game II 5 301982 problem-325-stone-game-ii

--description--

A game is played with two piles of stones and two players. At her turn, a player removes a number of stones from the larger pile. The number of stones she removes must be a positive multiple of the number of stones in the smaller pile.

E.g., let the ordered pair(6,14) describe a configuration with 6 stones in the smaller pile and 14 stones in the larger pile, then the first player can remove 6 or 12 stones from the larger pile.

The player taking all the stones from a pile wins the game.

A winning configuration is one where the first player can force a win. For example, (1,5), (2,6) and (3,12) are winning configurations because the first player can immediately remove all stones in the second pile.

A losing configuration is one where the second player can force a win, no matter what the first player does. For example, (2,3) and (3,4) are losing configurations: any legal move leaves a winning configuration for the second player.

Define S(N) as the sum of (xi+yi) for all losing configurations (xi,yi), 0 < xi < yi ≤ N. We can verify that S(10) = 211 and S(104) = 230312207313.

Find S(1016) mod 710.

--hints--

euler325() should return 54672965.

assert.strictEqual(euler325(), 54672965);

--seed--

--seed-contents--

function euler325() {

  return true;
}

euler325();

--solutions--

// solution required