* fix(curriculum): tests quotes * fix(curriculum): fill seed-teardown * fix(curriculum): fix tests and remove unneeded seed-teardown
		
			
				
	
	
		
			179 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3ac1000cf542c50febf
 | ||
| challengeType: 5
 | ||
| title: 'Problem 64: Odd period square roots'
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id='description'>
 | ||
| All square roots are periodic when written as continued fractions and can be written in the form:
 | ||
| 
 | ||
| √N = a0 +
 | ||
| 1
 | ||
| 
 | ||
| a1 +
 | ||
| 1
 | ||
| 
 | ||
| 
 | ||
| a2 +
 | ||
| 1
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| a3 + ...
 | ||
| 
 | ||
| For example, let us consider √23:
 | ||
| 
 | ||
| √23 = 4 + √23 — 4 = 4 + 
 | ||
| 1
 | ||
|  = 4 + 
 | ||
| 1
 | ||
| 
 | ||
| 1√23—4
 | ||
| 
 | ||
| 1 + 
 | ||
| √23 – 37
 | ||
| 
 | ||
| If we continue we would get the following expansion:
 | ||
| 
 | ||
| √23 = 4 +
 | ||
| 1
 | ||
| 
 | ||
| 1 +
 | ||
| 1
 | ||
| 
 | ||
| 
 | ||
| 3 +
 | ||
| 1
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 1 +
 | ||
| 1
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 8 + ...
 | ||
| 
 | ||
| The process can be summarised as follows:
 | ||
| 
 | ||
| a0 = 4,
 | ||
| 
 | ||
| 1√23—4
 | ||
|  = 
 | ||
| √23+47
 | ||
|  = 1 + 
 | ||
| √23—37
 | ||
| a1 = 1,
 | ||
| 
 | ||
| 7√23—3
 | ||
|  = 
 | ||
| 7(√23+3)14
 | ||
|  = 3 + 
 | ||
| √23—32
 | ||
| a2 = 3,
 | ||
| 
 | ||
| 2√23—3
 | ||
|  = 
 | ||
| 2(√23+3)14
 | ||
|  = 1 + 
 | ||
| √23—47
 | ||
| a3 = 1,
 | ||
| 
 | ||
| 7√23—4
 | ||
|  = 
 | ||
| 7(√23+4)7
 | ||
|  = 8 + 
 | ||
| √23—4
 | ||
| a4 = 8,
 | ||
| 
 | ||
| 1√23—4
 | ||
|  = 
 | ||
| √23+47
 | ||
|  = 1 + 
 | ||
| √23—37
 | ||
| a5 = 1,
 | ||
| 
 | ||
| 7√23—3
 | ||
|  = 
 | ||
| 7(√23+3)14
 | ||
|  = 3 + 
 | ||
| √23—32
 | ||
| a6 = 3,
 | ||
| 
 | ||
| 2√23—3
 | ||
|  = 
 | ||
| 2(√23+3)14
 | ||
|  = 1 + 
 | ||
| √23—47
 | ||
| a7 = 1,
 | ||
| 
 | ||
| 7√23—4
 | ||
|  = 
 | ||
| 7(√23+4)7
 | ||
|  = 8 + 
 | ||
| √23—4
 | ||
| 
 | ||
| It can be seen that the sequence is repeating. For conciseness, we use the notation √23 = [4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely.
 | ||
| 
 | ||
| The first ten continued fraction representations of (irrational) square roots are:
 | ||
| √2=[1;(2)], period=1
 | ||
| √3=[1;(1,2)], period=2
 | ||
| √5=[2;(4)], period=1
 | ||
| √6=[2;(2,4)], period=2
 | ||
| √7=[2;(1,1,1,4)], period=4
 | ||
| √8=[2;(1,4)], period=2
 | ||
| √10=[3;(6)], period=1
 | ||
| √11=[3;(3,6)], period=2
 | ||
| √12= [3;(2,6)], period=2
 | ||
| √13=[3;(1,1,1,1,6)], period=5
 | ||
| Exactly four continued fractions, for N ≤ 13, have an odd period.
 | ||
| How many continued fractions for N ≤ 10000 have an odd period?
 | ||
| </section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id='instructions'>
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>euler64()</code> should return 1322.
 | ||
|     testString: assert.strictEqual(euler64(), 1322, '<code>euler64()</code> should return 1322.');
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler64() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler64();
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| </section>
 |