* Correct ProjectEuler:002 definition and tests From projecteuler.net: By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. Correct: take all f(n) where f(n) <= 4,000,000 and f(n) is even Incorrect: take all f(n) where n <= 4,000,000 and f(n) is even * Incorporate PR review suggestios to ProjectEuler 002 Reword the problem statement Co-Authored-By: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2.0 KiB
2.0 KiB
id, challengeType, title, forumTopicId
id | challengeType | title | forumTopicId |
---|---|---|---|
5900f36e1000cf542c50fe81 | 5 | Problem 2: Even Fibonacci Numbers | 301838 |
Description
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed n
, find the sum of the even-valued terms.
Instructions
Tests
tests:
- text: <code>fiboEvenSum(10)</code> should return 10.
testString: assert.strictEqual(fiboEvenSum(10), 10);
- text: <code>fiboEvenSum(60)</code> should return 44.
testString: assert.strictEqual(fiboEvenSum(60), 44);
- text: <code>fiboEvenSum(1000)</code> should return 798.
testString: assert.strictEqual(fiboEvenSum(1000), 798);
- text: <code>fiboEvenSum(100000)</code> should return 60696.
testString: assert.strictEqual(fiboEvenSum(100000), 60696);
- text: <code>fiboEvenSum(4000000)</code> should return 4613732.
testString: assert.strictEqual(fiboEvenSum(4000000), 4613732);
- text: Your function should return an <code>even</code> value.
testString: assert.equal(fiboEvenSum(10) % 2 === 0, true);
Challenge Seed
function fiboEvenSum(n) {
// You can do it!
return true;
}
fiboEvenSum(10);
Solution
const fiboEvenSum = (number) => {
if (number <= 1) {
return 0;
} else {
let evenSum = 0, prevFibNum = 1, fibNum = 2; // According to problem description our Fibonacci series starts with 1, 2
for (let i = 2; fibNum <= number; i++) {
if (fibNum % 2 == 0) {
evenSum += fibNum;
}
[prevFibNum, fibNum] = [fibNum, prevFibNum + fibNum];
}
return evenSum;
}
}