* spelling: accidentally * spelling: announce * spelling: assembly * spelling: avoid * spelling: backend * spelling: because * spelling: claimed * spelling: candidate * spelling: certification * spelling: certified * spelling: challenge * spelling: circular * spelling: it isn't * spelling: coins * spelling: combination * spelling: compliant * spelling: containers * spelling: concise * spelling: deprecated * spelling: development * spelling: donor * spelling: error * spelling: everything * spelling: exceed * spelling: exist * spelling: falsy * spelling: faulty * spelling: forward * spelling: handle * spelling: indicates * spelling: initial * spelling: integers * spelling: issealed * spelling: javascript * spelling: length * spelling: maximum * spelling: minimum * spelling: mutable * spelling: notifier * spelling: coordinate * spelling: passport * spelling: perform * spelling: permuter * spelling: placeholder * spelling: progressively * spelling: semantic * spelling: submission * spelling: submit * spelling: translations * spelling: turquoise * spelling: visualization * spelling: without * spelling: registration * spelling: representation
1.0 KiB
1.0 KiB
id, challengeType, title, forumTopicId
id | challengeType | title | forumTopicId |
---|---|---|---|
5900f3c71000cf542c50feda | 5 | Problem 91: Right triangles with integer coordinates | 302208 |
Description
There are exactly fourteen triangles containing a right angle that can be formed when each coordinate lies between 0 and 2 inclusive; that is,0 ≤ x1, y1, x2, y2 ≤ 2.
Given that 0 ≤ x1, y1, x2, y2 ≤ 50, how many right triangles can be formed?
Instructions
Tests
tests:
- text: <code>euler91()</code> should return 14234.
testString: assert.strictEqual(euler91(), 14234);
Challenge Seed
function euler91() {
// Good luck!
return true;
}
euler91();
Solution
// solution required