Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-245-coresilience.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

988 B
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4621000cf542c50ff74 Problem 245: Coresilience 5 301892 problem-245-coresilience

--description--

We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 411.

The resilience of a number d > 1 is then φ(d)d 1 , where φ is Euler's totient function. We further define the coresilience of a number n > 1 as C(n)= n φ(n)n 1. The coresilience of a prime p is C(p) = 1p 1. Find the sum of all composite integers 1 < n ≤ 2×1011, for which C(n) is a unit fraction.

--hints--

euler245() should return 288084712410001.

assert.strictEqual(euler245(), 288084712410001);

--seed--

--seed-contents--

function euler245() {

  return true;
}

euler245();

--solutions--

// solution required